Telegram Group & Telegram Channel
🎲 Задача с подвохом: Монетки и ошибка интуиции

Условие:

У вас есть две монеты:

• Монета A: честная, вероятность выпадения орла = 50%
• Монета B: нечестная, у неё две стороны с орлами (орёл всегда выпадает)

Вы случайным образом выбираете одну монету (с вероятностью 50% каждая) и подбрасываете её один раз. Выпадает орёл.

Вопрос:
Какова вероятность того, что вы выбрали нечестную монету (Монета B)?

🔍 Разбор:

Нам нужна вероятность:
**P(B | O)** — вероятность того, что выбрана Монета B при условии, что выпал орёл.

📈 **Быстрая формула (Байес):**

P(B | O) = (P(O | 😎 * P(B)) / (P(O | A) * P(A) + P(O | 😎 * P(B))

Подставляем:
= (1 * 0.5) / (0.5 * 0.5 + 1 * 0.5)
= 0.5 / 0.75 ≈ 0.6667

Вероятность ≈ 66,7%

💻 **Проверим симуляцией (Python):**

```python
import random

def simulate(n_trials=100_000):
count_B_given_O = 0
count_O = 0

for _ in range(n_trials):
coin = random.choice(['A', 'B']) # выбираем монету
if coin == 'A':
result = random.choice(['H', 'T']) # честная монета
else:
result = 'H' # нечестная монета (всегда орёл)

if result == 'H':
count_O += 1
if coin == 'B':
count_B_given_O += 1

prob = count_B_given_O / count_O
print(f"Симуляция: вероятность P(B | O) ≈ {prob:.4f}")

simulate()
```

Примерный вывод:

```
Симуляция: вероятность P(B | O) ≈ 0.6665
```

💥 **Подвох:**

Многие интуитивно думают, что вероятность остаётся 50%, но факт выпадения орла изменяет наше знание о ситуации — это типичная ошибка игнорирования условной вероятности.

🧠 **Что важно для Data Science:**

• Принцип обновления вероятностей лежит в основе Байесовских моделей
• Ошибки интуиции часто приводят к неправильным выводам при работе с вероятностями
• Симуляция помогает проверять теорию и укреплять понимание статистики


@machinelearning_interview



tg-me.com/machinelearning_interview/1788
Create:
Last Update:

🎲 Задача с подвохом: Монетки и ошибка интуиции

Условие:

У вас есть две монеты:

• Монета A: честная, вероятность выпадения орла = 50%
• Монета B: нечестная, у неё две стороны с орлами (орёл всегда выпадает)

Вы случайным образом выбираете одну монету (с вероятностью 50% каждая) и подбрасываете её один раз. Выпадает орёл.

Вопрос:
Какова вероятность того, что вы выбрали нечестную монету (Монета B)?

🔍 Разбор:

Нам нужна вероятность:
**P(B | O)** — вероятность того, что выбрана Монета B при условии, что выпал орёл.

📈 **Быстрая формула (Байес):**

P(B | O) = (P(O | 😎 * P(B)) / (P(O | A) * P(A) + P(O | 😎 * P(B))

Подставляем:
= (1 * 0.5) / (0.5 * 0.5 + 1 * 0.5)
= 0.5 / 0.75 ≈ 0.6667

Вероятность ≈ 66,7%

💻 **Проверим симуляцией (Python):**

```python
import random

def simulate(n_trials=100_000):
count_B_given_O = 0
count_O = 0

for _ in range(n_trials):
coin = random.choice(['A', 'B']) # выбираем монету
if coin == 'A':
result = random.choice(['H', 'T']) # честная монета
else:
result = 'H' # нечестная монета (всегда орёл)

if result == 'H':
count_O += 1
if coin == 'B':
count_B_given_O += 1

prob = count_B_given_O / count_O
print(f"Симуляция: вероятность P(B | O) ≈ {prob:.4f}")

simulate()
```

Примерный вывод:

```
Симуляция: вероятность P(B | O) ≈ 0.6665
```

💥 **Подвох:**

Многие интуитивно думают, что вероятность остаётся 50%, но факт выпадения орла изменяет наше знание о ситуации — это типичная ошибка игнорирования условной вероятности.

🧠 **Что важно для Data Science:**

• Принцип обновления вероятностей лежит в основе Байесовских моделей
• Ошибки интуиции часто приводят к неправильным выводам при работе с вероятностями
• Симуляция помогает проверять теорию и укреплять понимание статистики


@machinelearning_interview

BY Machine learning Interview


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/machinelearning_interview/1788

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

Telegram Auto-Delete Messages in Any Chat

Some messages aren’t supposed to last forever. There are some Telegram groups and conversations where it’s best if messages are automatically deleted in a day or a week. Here’s how to auto-delete messages in any Telegram chat. You can enable the auto-delete feature on a per-chat basis. It works for both one-on-one conversations and group chats. Previously, you needed to use the Secret Chat feature to automatically delete messages after a set time. At the time of writing, you can choose to automatically delete messages after a day or a week. Telegram starts the timer once they are sent, not after they are read. This won’t affect the messages that were sent before enabling the feature.

A Telegram spokesman declined to comment on the bond issue or the amount of the debt the company has due. The spokesman said Telegram’s equipment and bandwidth costs are growing because it has consistently posted more than 40% year-to-year growth in users.

Machine learning Interview from pl


Telegram Machine learning Interview
FROM USA